Source code for pysptools.util.data_format

#
#------------------------------------------------------------------------------
# Copyright (c) 2013-2014, Christian Therien
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
#
# data_format.py - This file is part of the PySptools package.
#

"""
convert2d, convert3d, normalize functions
"""

from __future__ import division

import numpy as np


[docs]def convert2d(M): """ Converts a 3D data cube (m x n x p) to a 2D matrix of points where N = m*n. Parameters: M: `numpy array` A HSI cube (m x n x p). Returns: `numpy array` 2D data matrix (N x p) """ if M.ndim != 3: raise RuntimeError('in formating.convert2d, M have {0} dimension(s), expected 3 dimensions'.format(M.ndim)) h, w, numBands = M.shape return np.reshape(M, (w*h, numBands))
[docs]def convert3d(M, h, w, sigLast=True): """ Converts a 1D (N) or 2D matrix (p x N) or (N x p) to a 3D data cube (m x n x p) where N = m * n Parameters: N: `numpy array` 1D (N) or 2D data matrix (p x N) or (N x p) h: `integer` Height axis length (or y axis) of the cube. w: `integer` Width axis length (or x axis) of the cube. siglast: `True [default False]` Determine if input N is (p x N) or (N x p). Returns: `numpy array` A 3D data cube (m x n x p) """ if M.ndim > 2: raise RuntimeError('in formating.convert2d, M have {0} dimension(s), expected 1 or 2 dimensions'.format(M.ndim)) N = np.array(M) if sigLast == False: if N.ndim == 1: return np.reshape(N, (h, w), order='F') else: numBands, n = N.shape return np.reshape(N.transpose(), (h, w, numBands), order='F') if sigLast == True: if N.ndim == 1: return np.reshape(N, (h, w)) else: numBands, n = N.shape return np.reshape(N.transpose(), (h, w, numBands), order='F')
[docs]def normalize(M): """ Normalizes M to be in range [0, 1]. Parameters: M: `numpy array` 1D, 2D or 3D data. Returns: `numpy array` Normalized data. """ minVal = np.min(M) maxVal = np.max(M) Mn = M - minVal; if maxVal == minVal: return np.zeros(M.shape); else: return Mn / (maxVal-minVal)